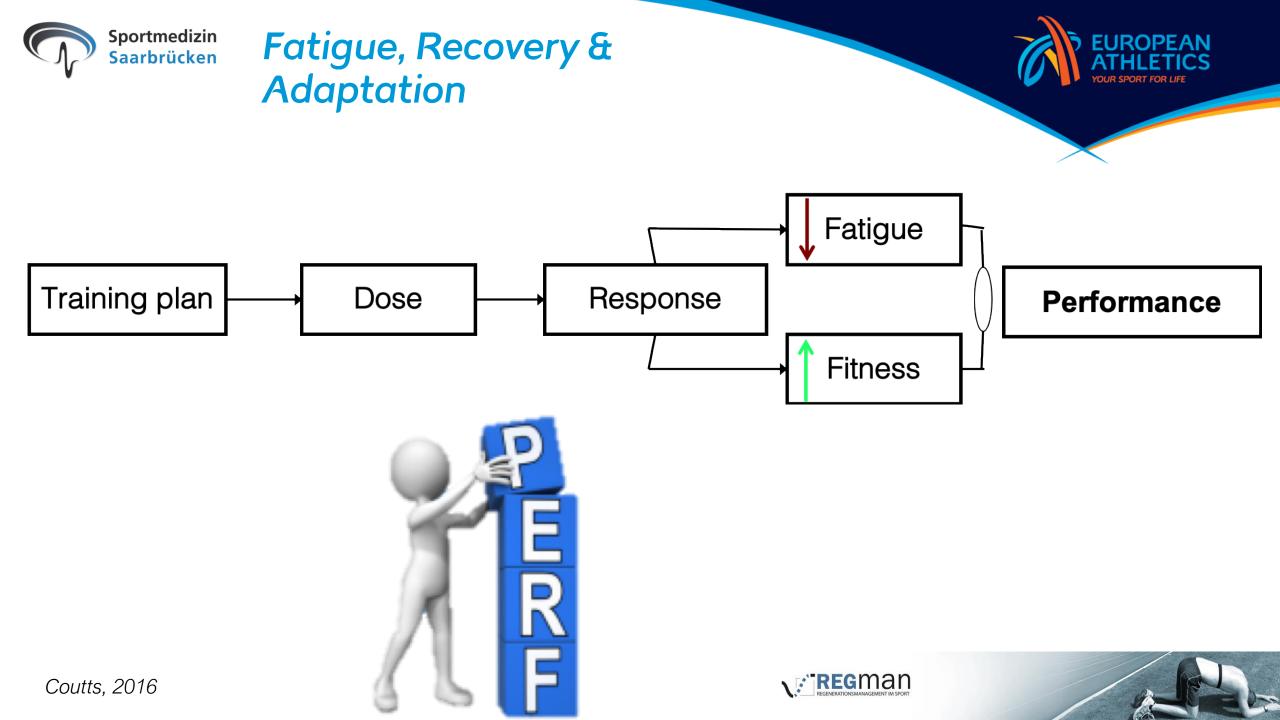
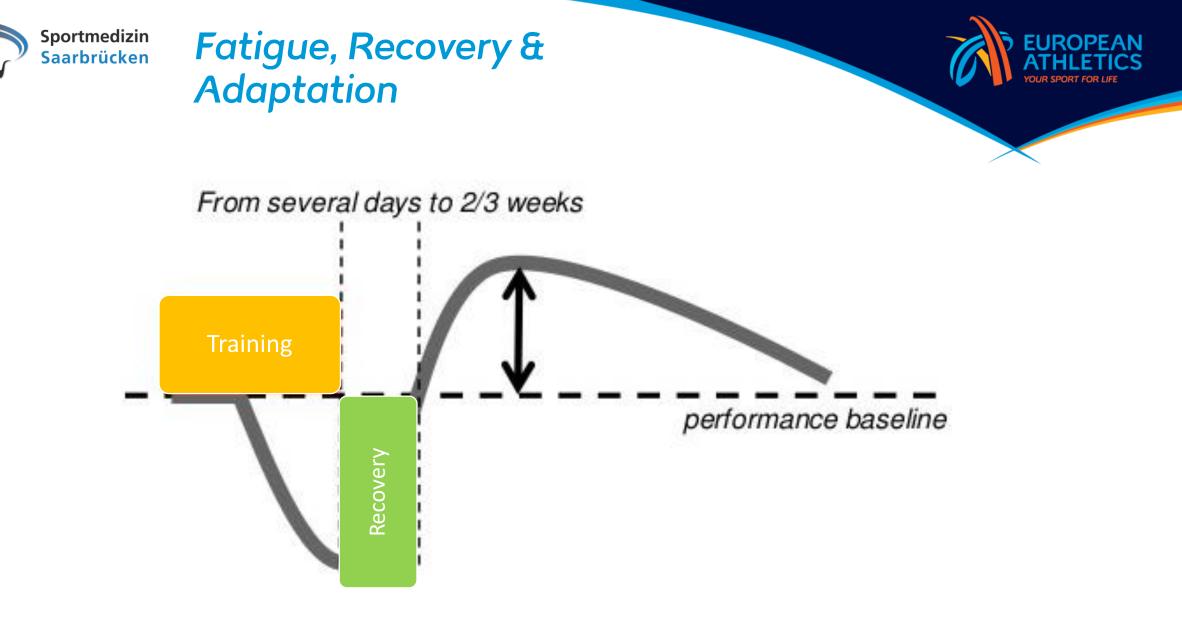


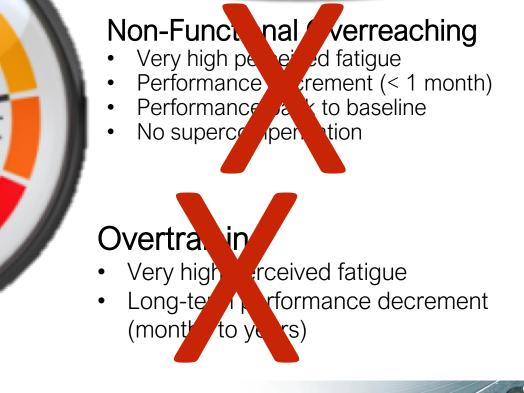
Science in Sport - Adaptation and Recovery

Dr. Sabrina Skorski (PhD) Institute of Sport and Preventive Medicine, Saarland University, Germany


s.skorski@mx.uni-saarland.de



Fatigue



Acute fatigue

- High perceived fatigue
- No performance decrement
- Supercompensation

Functional Overreaching

- Very high perceived fatigue
- Short-term performance decrement (days, weeks)
 - Supercompensation

International Journal of Sports Physiology and Performance, 2013, 7, 227-242 © 2013 Human Kinetics, Inc.

Sportmedizin

Saarbrücken

INTERNATIONAL JOURNAL OF SPORTS PHYSIOLOGY AND PERFORMANCE www.ijspp-journal.com BRIEF REVIEW

Cooling and Performance Recovery of Trained Athletes: A Meta-Analytical Review

Wigand Poppendieck, Oliver Faude, Melissa Wegmann, and Tim Meyer

- Decreased muscle & body temperature
- Reduced muscle damage, inflammation, heart rate & cardiac output
- Peripheral vasoconstriction reducing edema formation

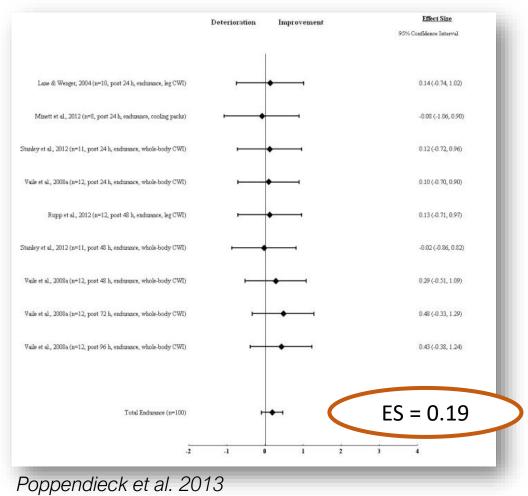
International Journal of Sports Physiology and Performance, 2013, 7, 227-242 © 2013 Human Kinetics, Inc. INTERNATIONAL JOURNAL OF SPORTS PHYSIOLOGY AND PERFORMANCE www.ijspp-journal.com BRIEF BEVIEW

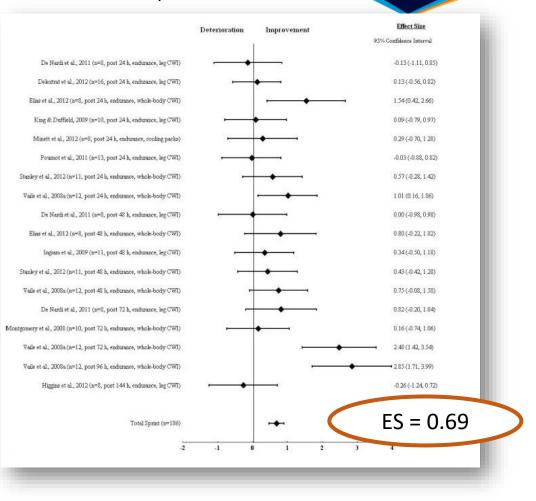
Cooling and Performance Recovery of Trained Athletes: A Meta-Analytical Review

• Temperature: 10 – 12 °C

Wigand Poppendieck, Oliver Faude, Melissa Wegmann, and Tim Meyer

- Duration: 5 20 minutes whole-body or 1 5 minutes intermittent, 30 minutes post-exercise
- Depth: hips, shoulder or fatigued muscles only

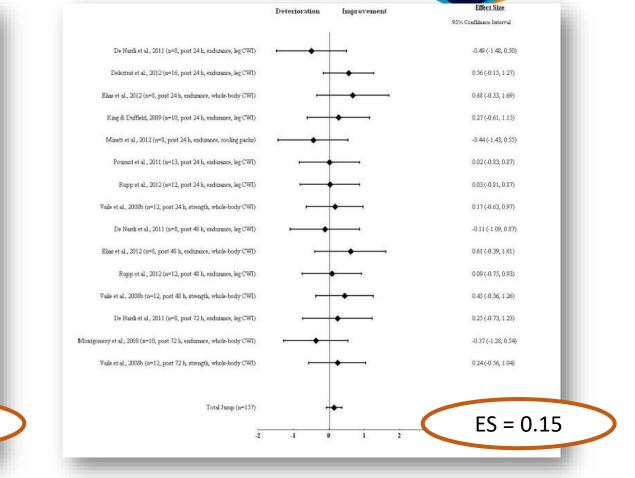



Endurance: + 2.6 %

Sportmedizin

Saarbrücken

Speed: + 2.6 %



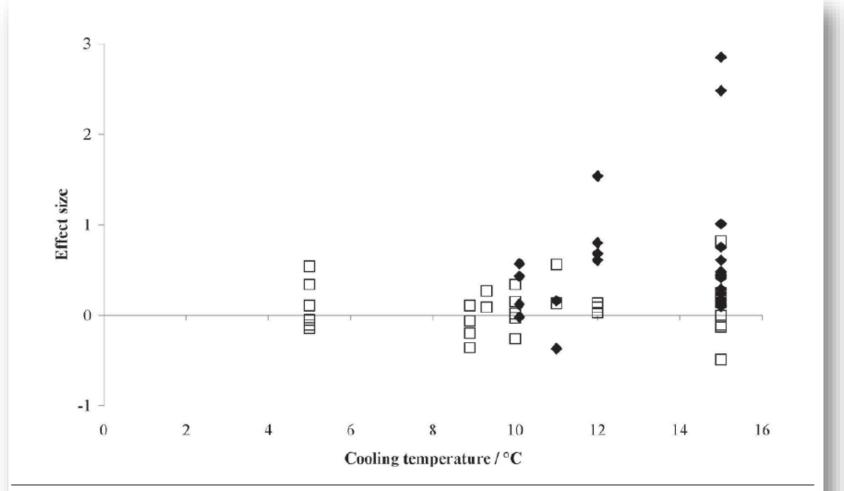
Sportmedizin Saarbrücken

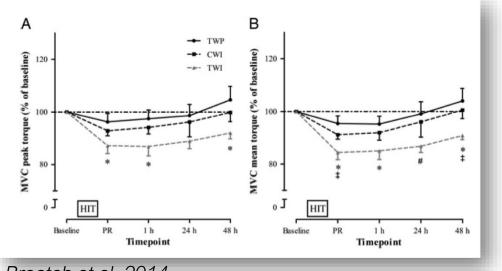
Jump: + 3.0 %

Strength: + 1.8 %

n orr

Poppendieck et al. 2013

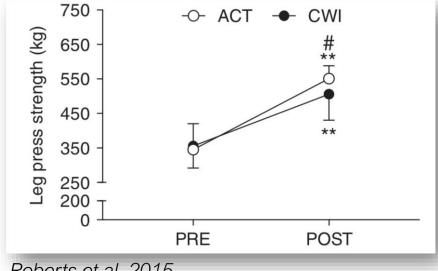


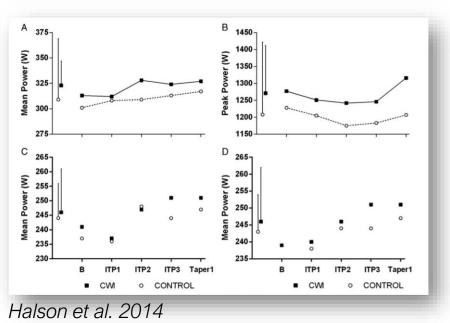

Figure 6 — Effects of cold-water immersion (CWI) after exercise on performance recovery with respect to water temperature. Black diamonds indicate whole-body CWI; white squares, part-body CWI.

CWI: 15 min, 10°C TWI: 15 min, 35°C Placebo: 15 min, 35 °C + "Recovery Oil"

			Time P	pint		
	Baseline	PE	PR	1 h	24 h	48 h
Physically ready						
CWI	7.7 ± 1.5	1.0 ± 1.5	4.8 ± 2.2	7.1 ± 1.8	8.4 ± 1.5	7.6 ± 1.9
TWP	7.1 ± 1.1	1.0 ± 0.7	3.7 ± 1.7	5.5 ± 2.1	6.8 ± 2.5^{c}	7.4 ± 1.8
TWI	7.4 ± 1.4	0.8 ± 0.7	3.1 ± 1.6*	4.5 ± 1.5*	6.7 ± 1.8*	6.5 ± 2.3
Mentally ready						
CWI	7.2 ± 1.6	2.8 ± 2.5	5.5 ± 2.1	7.1 ± 1.9	7.9 ± 1.5	7.3 ± 1.9
TWP	6.7 ± 1.1	2.4 ± 1.9	4.5 ± 1.3	6.0 ± 1.9	7.0 ± 1.9	7.6 ± 1.2
TMI	79+19	12+00	97 + 17* **	10+00*	65+21	5 6 ± 2 68
Fatigue						
CWI	2.8 ± 1.9	9.1 ± 0.9	4.7 ± 2.0	3.2 ± 1.9	1.8 ± 1.5	3.0 ± 2.5
TWP	2.5 ± 1.6	9.0 ± 0.6	4.7 ± 1.5	4.2 ± 2.1	2.9 ± 1.9	2.7 ± 1.6
TWI	3.4 ± 1.8	8.4 ± 2.3	5.7 ± 2.1	3.9 ± 2.0	2.9 ± 2.0	3.7 ± 2.3

- No difference between placebo & CWI
- Improved performance after placebo compared to TWI





Roberts et al. 2015

Reduced adaptation in strength & muscle mass (Roberts et al. 2015)

Molecular changes in inflammation & satellite cells (Roberts et al. 2015; Yamane et al. 2006)

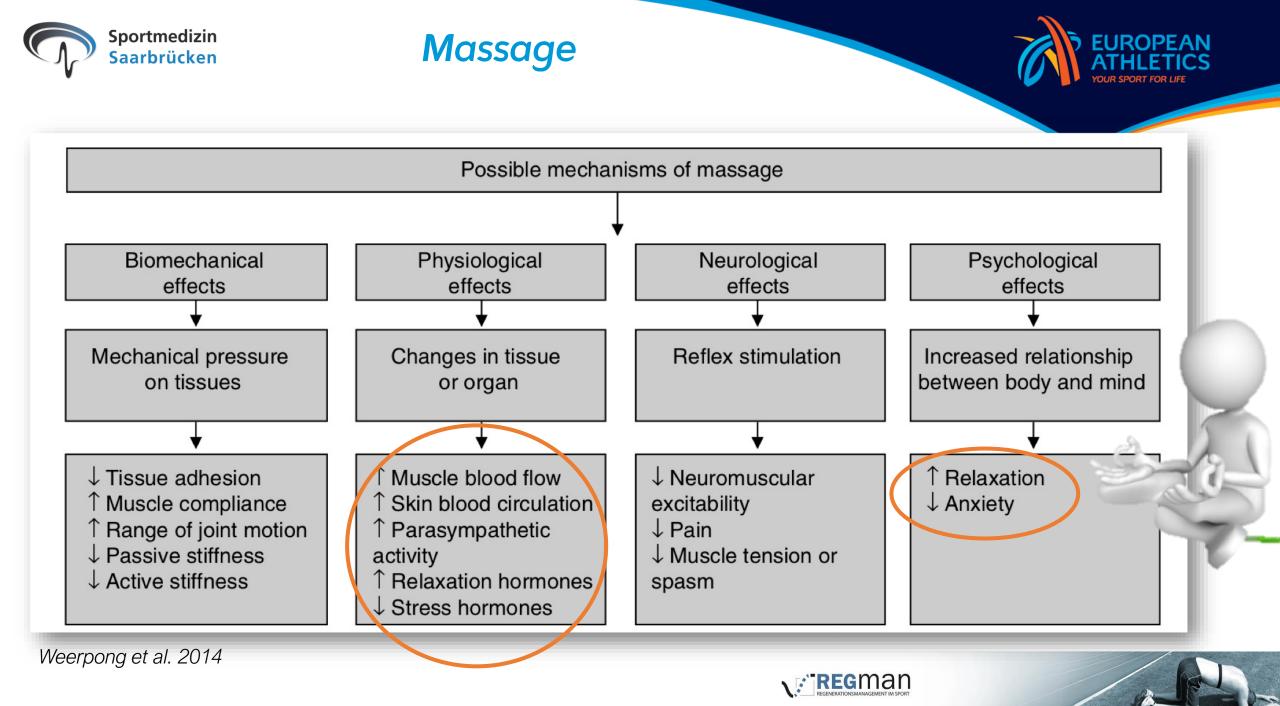
- Improved VO_{2max} & time to exhaustion (Yamane et al. 2006; Ishan et al. 2015)
- Increased training tolerance (e.g. interval training) (H alson et al. 2014)
 - Molecular changes in mitochondrial

biogenesis (Ishan et al. 2015)

"Mechanical manipulation of body tissues with rhythmical pressure and stroking for the purpose of promoting health and well-being." (Cafarelli et al., 2005)

Massage

Application:


- 1. Recovery
- 2. Competition preparation
- 3. Injury prevention & rehabilitation

Very popular in athletes but evidence on effects & physiological mechanisms are unclear.

Overall effect: 3.3%

Type of MassageClassic Western Massage:Vibration:1.8%Underwater Massage:2.8%

Duration:

<mark>5 – 6 min:</mark> 8 – 12 min: 15 – 20 min: >30 min:

Duration of effect:

Up to 10 min: 24 h: 48 h: 72 h: 96 h: >96 h:

Massage

Sports Med DOI 10.1007/s40279-015-0420-x

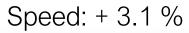
REVIEW ARTICLE

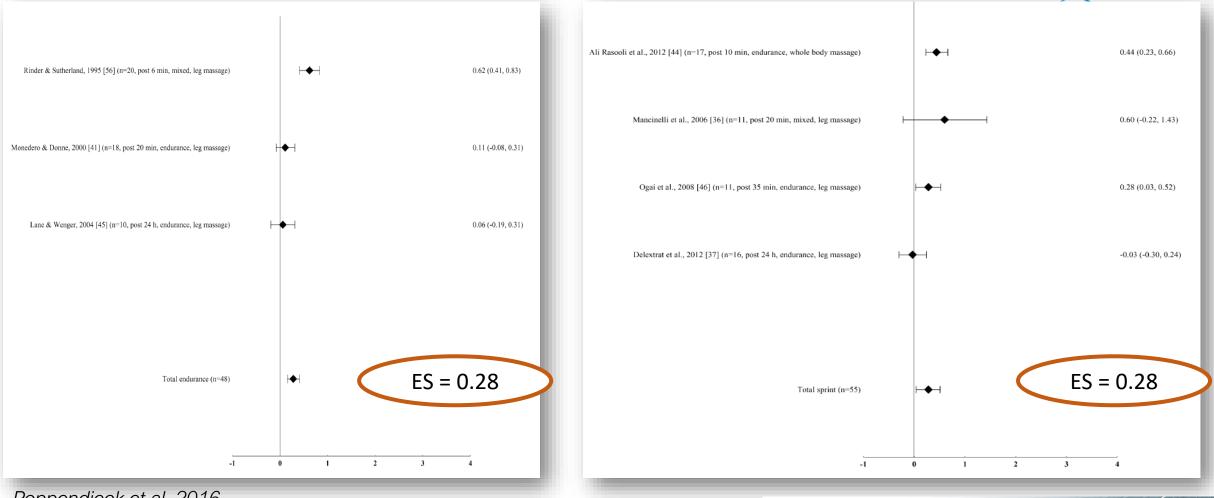
Massage and Performance Recovery: A Meta-Analytical Review

Wigand Poppendieck $^{1,2}\cdot$ Melissa Wegmann $^1\cdot$ Alexander Ferrauti $^3\cdot$ Michael Kellmann $^{4,5}\cdot$ Mark Pfeiffer $^6\cdot$ Tim Meyer 1

7.8% 6.1% 0.9% 1.1%

7.9% 1.7% 2.8% 3.9% 4.6% 1.1%

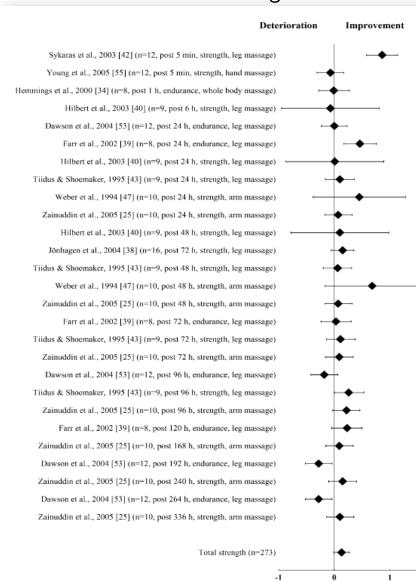

CrossMark



Massage

Endurance: + 6.0 %

Poppendieck et al. 2016



Strength: + 6.0 %

Massage

2

Effect size
95% Confidence interval
0.86 (0.58, 1.14)
-0.07 (-0.31, 0.17)
-0.01 (-0.28, 0.27)
-0.07 (-0.95, 0.81)
0.00 (-0.23, 0.23)
0.46 (0.17, 0.75)
0.01 (-0.87, 0.89)
0.10 (-0.16, 0.36)
0.45 (-0.38, 1.28)
0.07 (-0.17, 0.32)
0.10 (-0.78, 0.98)
0.15 (-0.06, 0.35)
0.06 (-0.20, 0.31)
0.68 (-0.17, 1.54)
0.07 (-0.17, 0.32)
0.03 (-0.24, 0.30)
0.11 (-0.14, 0.37)
0.09 (-0.16, 0.34)
-0.18 (-0.42, 0.06)
0.26 (0.00, 0.53)
0.22 (-0.03, 0.46)
0.23 (-0.05, 0.50)
0.09 (-0.15, 0.34)
-0.28 (-0.52, -0.04)
0.15 (-0.10, 0.40)
-0.28 (-0.52, -0.04)
0.10 (=0.14, 0.35)
ES = 0.13
$L_{3} = 0.13$
3 4

Massage and Performance Recovery: Does it Really Work?

By Wigand Poppendieck et al. in Sports Medicine, January 2016

Designed by @YLMSportScience

The statistical analyses of this meta-analysis were based on 22 studies with 270 subjects 5 used techniques of automated massage (e.g. vibration), while the other 17 used classic manual massage

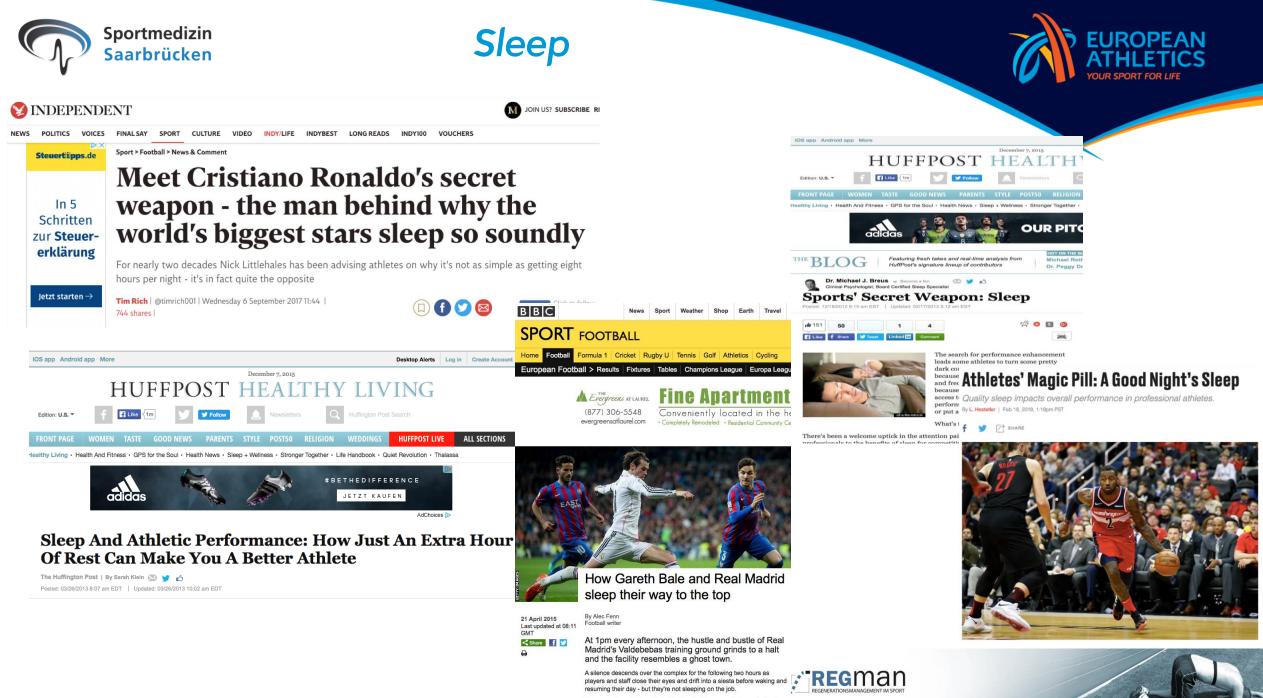
HOW LONG?

A tendency was found for shorter massage (5–12 min) to have larger effects than massage lasting more than 12 min

WHEN?

The effects were larger for short-term recovery of up to 10 min (than for recovery periods of more than 20 min). Although after high-intensity mixed exercise, massage yielded medium positive effects, the effects after strength exercise and endurance exercise were smaller

WHO?


A tendency was found for untrained subjects to benefit more from massage than trained athletes

CONCLUSION

The effects of massage on performance recovery are rather small and partly unclear, but can be relevant under appropriate circumstances (shortterm recovery after intensive mixed training). However, it remains questionable if the limited effects justify the widespread use of massage as a recovery intervention in competitive athletes

Designed by Yann Le Meur (@YLMSportScience)

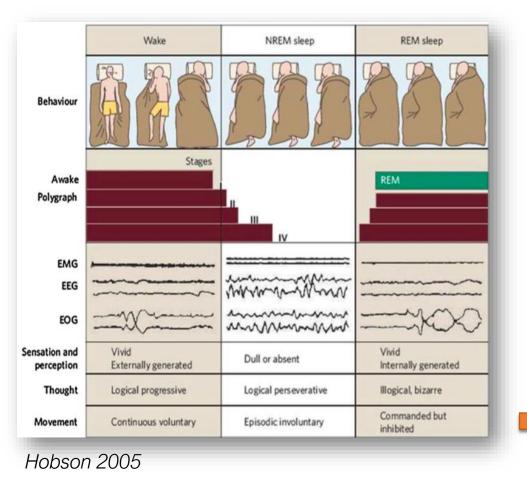
The scene is a window into football's relentless pursuit of marginal gains

Sleep is

"... Not simply the absence of waking, sleep is a special activity of the brain, controlled by elaborate and precise mechanisms. Not simply a state of rest, sleep has its own specific, positive functions" (Hobson, 1995)

Essential for cognitive & physical function:

- 1. Restorative effects on immune & endocrine systems
- 2. Assistance in recovery of central nervous system & metabolic cost
- 3. Cognitive development



Sleep Phases

90 min cycles separated in REM and NREM sleep

NREM:

Protein synthesis

Mobilisation of free fatty acids

Increased release in growth hormones

Accelerated healing of peripheral muscle damage.

REM: Critical in establishing brain connections.

Sleep in Athletes

- Ø sleep duration & sleep quality
- Sleep onset latency

Group	n	Time in bed (hrs:mins)	Sleep latency (mins)	Time asleep (hrs:mins)	Time awake (hrs:mins)	Sleep efficiency (%)	Fragmentation index	Actual sleep (%)	Moving minutes (mins)	Moving time (%)
Controls	20	$8:07\pm0:20_a$	$5.0 \pm 2.5_{b}$	7:11 ± 0:25	$0:50 \pm 0:16_{c}$	$88.7 \pm 3.6_{d}$	$29.8 \pm 9.0_{e}$	$89.7\pm3.3_{ m f}$	$45.4 \pm 11.6_{g}$	$9.4 \pm 2.4_{ m h}$
Athletes	46	$8:36 \pm 0:53_{a}$	$18.2\pm16.5_{b}$	6:55 ± 0:43	$1:17 \pm 0:31_{c}$	$80.6\pm6.4_{\rm d}$	$36.0 \pm 12.4_{e}$	$84.3\pm5.7_{\rm f}$	$87.6 \pm 32.6_{g}$	$17.8 \pm 6.2_{b}$
Canoeing	11	8:32 ± 0:35	19.1 ± 20.2	6:58 ± 0:23	1:06 ± 0:17	81.8 ± 4.3	<i>31.0</i> ± <i>9.0</i>	86.3 ± 3.4	75.6 ± 19.8	15.6 ± 4.2
Diving	14	8:46 ± 0:55	21.0 ± 19.0	7:05 ± 0:47	1:17 ± 0:19	80.9 ± 5.3	39.3 ± 11.8	84.5 ± 3.7	96.5 ± 30.3	19.3 ± 5.3
Rowing	10	7:46 ± 0:40	10.2 ± 6.6	$6:25 \pm 0:50$	1:08 ± 0:32	82.5 ± 8.3	35.6±16.1	84.8 ± 7.2	77.9 ± 41.3	17.3 ± 9.1
Speed skating	11	9:13 ± 0:47	21.1 ± 15.1	$7:06 \pm 0:38$	1:38 ± 0:46	77.2 ± 7.1	37.3 ± 12.2	81.6 ± 7.5	97.0 ± 34.8	18.4 ± 5.7

Note: Mean values with the same subscript are significantly different (p < 0.05).

Leeder et al. 2012

Sleep & Training

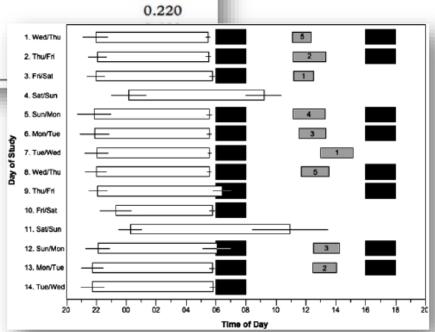


Table II. Sleep/wake variables on training days and rest days (mean $\pm s$)

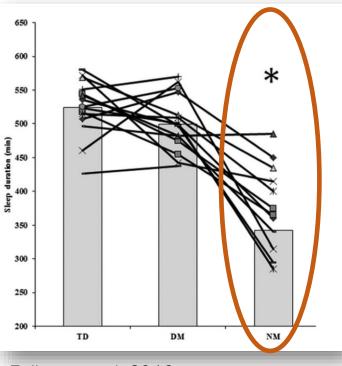
Measure	Training days	Rest days	p-Value
Bedtime (hh:mm)	$22:05 \pm 00:52$	00:32±01:29	< 0.001
Get-up time (hh:mm)	$05:48 \pm 00:24$	$09:47 \pm 01:47$	< 0.001
Time in bed (h)	7.7 ± 0.9	9.3 ± 1.7	< 0.001
Sleep onset latency (min)	40.8 ± 43.2	31.8 ± 21.6	0.543
Sleep duration (h)	5.4 ± 1.3	7.1 ± 1.2	< 0.001
Sleep efficiency (%)	70.7 ± 15.1	77.2 ± 7.5	0.220
Wake after sleep onset (%)	17.6 ± 8.8	16.2 ± 7.7	
Daytime nap duration (h)	0.2 ± 0.5	0.0 ± 0.0^{a}	1. Wed/Thu
Total sleep time (h)	5.6 ± 1.4	7.1 ± 1.2	2. ThưFri
			3 Eri/Sot

Sargent et al. 2014

Sleep & Competition

- Increased sleep disturbances be fore competition.
- Total sleep duration reduced up to 60 min.
- Total sleep volume & efficacy be low recommendations.
- Nervousness, increased physical & mental stress.

	All Particip	pants	Gender			
	Absolute	Frequency (%)	Male (%)	Female (%)	Chi square	p-Value
Overall	181	64.0	65.9	62.4	0.55	0.619
"Mhat kinds of problems did you av	nariance with	vour clean prior	to an impo	ortant compe	tition or gam	e?" n=179
Problems falling asleep	147	82.1	80.7	83.3	0.21	0.698
Waking up early in the morning	48	26.8	24.1	29.2	0.58	0.501
Waking up at night	68	38.0	32.5	42.7	1.96	0.169
Unpleasant dreams	10	5.6	0	10	9.16	0.002*
Not feeling refreshed in morning	65	36.3	34.9	37.5	0.13	0.757
"What reasons were responsible for	vour sleeping	problems prior	to an impo	rtant compet	ition or game	?" n=176
Thoughts about competition	147	83.5	82.9	84.0	0.16	0.837
Nervousness about competition	77	43.8	42.7	44.7	0.07	0.877
Not used to surroundings	39	22.2	23.3	22.3	0.02	1.000
Noises in room or outside	31	17.6	15.0	19.0	0.75	0.428
"In what manner did the cleaning or	oblome influe	nco voue porfor	nance duri	ng the compe	tition or gan	ne?" n = 17
No influence	83	46.6	48.2	45.3	0.15	0.764
Increased daytime sleepiness	75	42.1	36.1	47.4	2.29	0.171
Bad mood the following day	24	13.4	13.5	13.7	0.01	1.000
Worse performance in competition	25	14.0	17.0	12.0	1.03	0.388
"Which strategies did you use to slee	o well in the	nights preceding	a competi	tion?" n = 176		
No Strategy	91	51.7	54.3	49.5	0.41	0.548
Methods to relax	37	21.0	22.2	20.0	0.13	0.853
Sleeping pills	23	13.1	12.3	13.7	0.07	0.826
Reading	46	26.1	18.5	32.6	4.51	0.034*
Watching TV	34	19.3	22.2	16.8	0.81	0.445


Juliff et al. 2013

Sleep & Competition

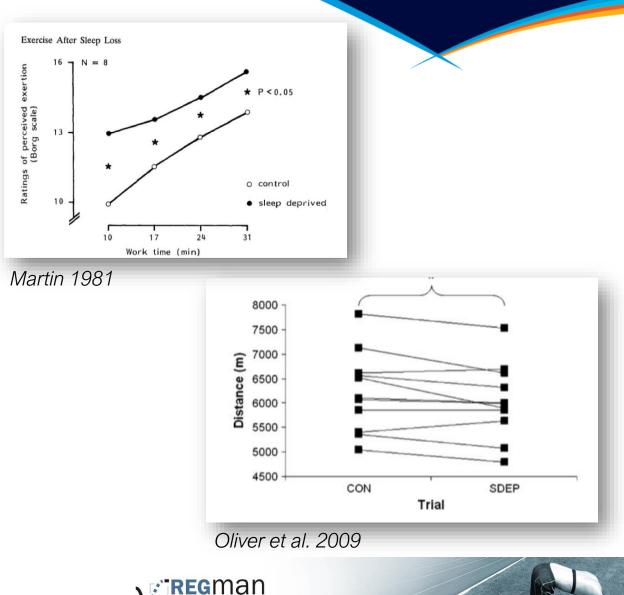
Fullagar et al. 2016

"Normal" sleep behaviour on training days & day matches.

After night matches:

- Sleep duration
- Perceived recovery
- Accumulated negative effect over season?

	TD (<i>n</i> = 95)	DM (<i>n</i> = 38)	NM (<i>n</i> = 116)
Bedtime	0:14 ± 0:38	2:16 ± 2:37 ^a	2:17 ± 0:57 ^a
Awakening time	8:04 ± 0:19	$9:04 \pm 1:08^{a}$	8:01 ± 0:41 ^c
Time in bed (h:min)	7:40 ± 0:42	$8:05 \pm 1:42^{a}$	6:55 ± 1:36 ^{a,c}
Total sleep duration (h:min)	6:36 ± 0:45	6:39 ± 1:32	5:28 ± 1:28 ^{a,c}



Total Sleep Deprivation

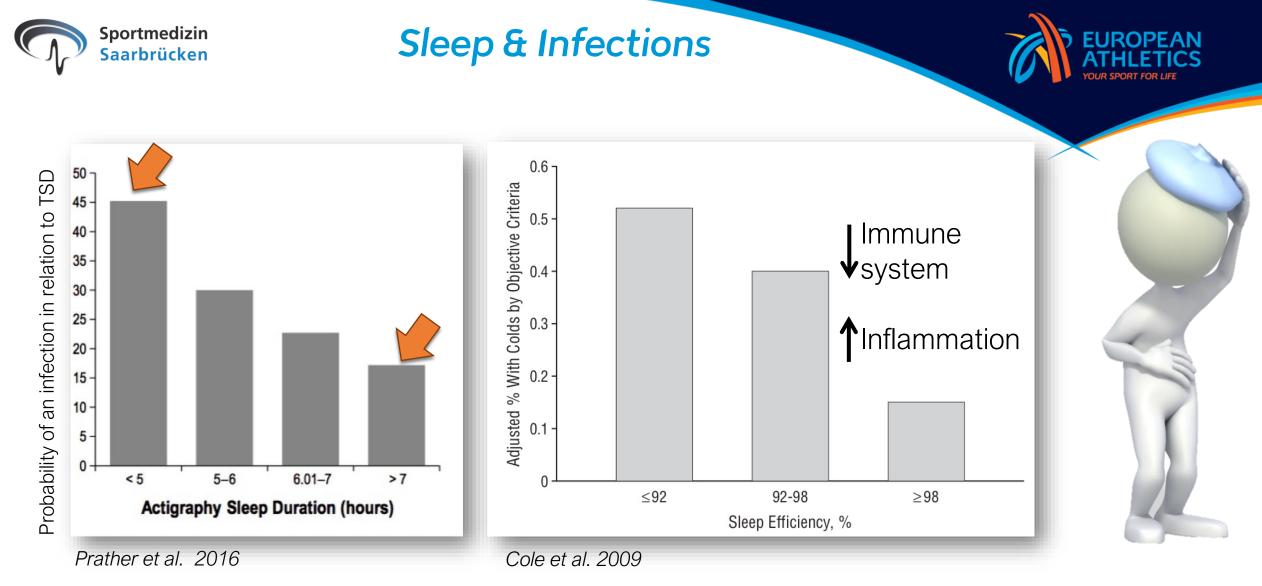
Endurance performance (> 30 min) Speed Strength

- Increased perceived load
- Reduced neuro activity
- Reduced muscle activity
- Impaired availability of energy

Partial Sleep Deprivation

Anaerobic capacity Peak performance Cognitive performance (reaction time, attention, decision making, m emory)

Impaired anaerobic glycolysis


Perceived load

 \bullet

•

< 5 h sleep/night increases risk for infection by <u>4.5 times.</u> < 92% SE increases risk by <u>5.5 times.</u>

Likelihood of Injury Base	ed on Hours of Sle	eep per Night		<u>(</u>)	YOUR SPORT FOR	RLIFE
70 60 50 50 50 50 50 50 50 50 50 50 50 50 50						
20 10 0 Five Six Aver Aver Allewski et al. 2014	Seven age Sleep per Night (hrs)	Eight Nine				
10 0 Five Six Aver		Eight Nine	Multiple logistic regression*	P value	OR (95% CI)	
10 0 Five Six Aver Aver Allewski et al. 2014	age Sleep per Night (hrs)		Multiple logistic regression*	<i>P</i> value 0.05	OR (95% CI) 0.39 (0.16–0.99)	

- Athletes who sleep < 8 h/night have <u>1.7 times</u> increased risk of injury.
- 61% reduced re-injury risk when athletes meet sleep recommendations.

Take Home Messages I

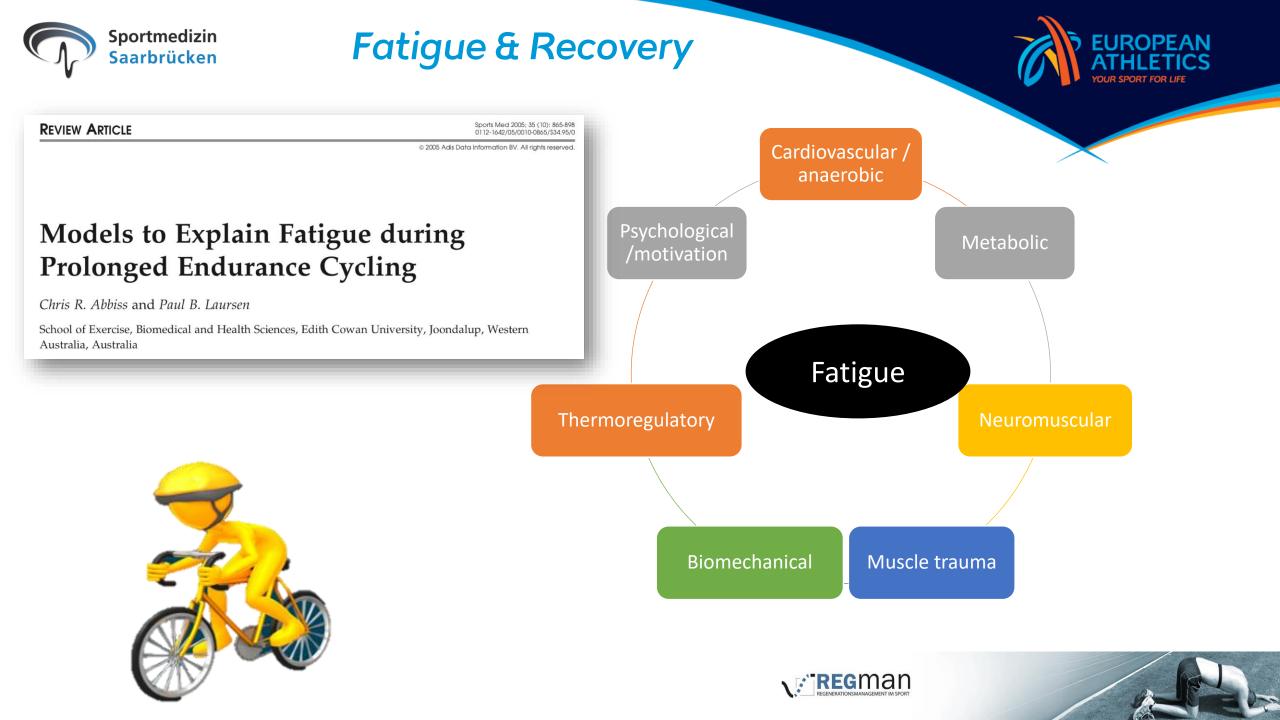
Do it simple but do it well!

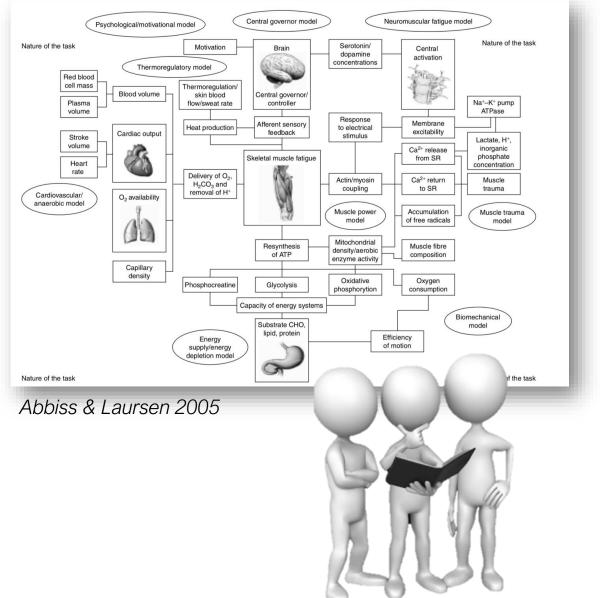
CWI: Context Placebo-effect Individual response

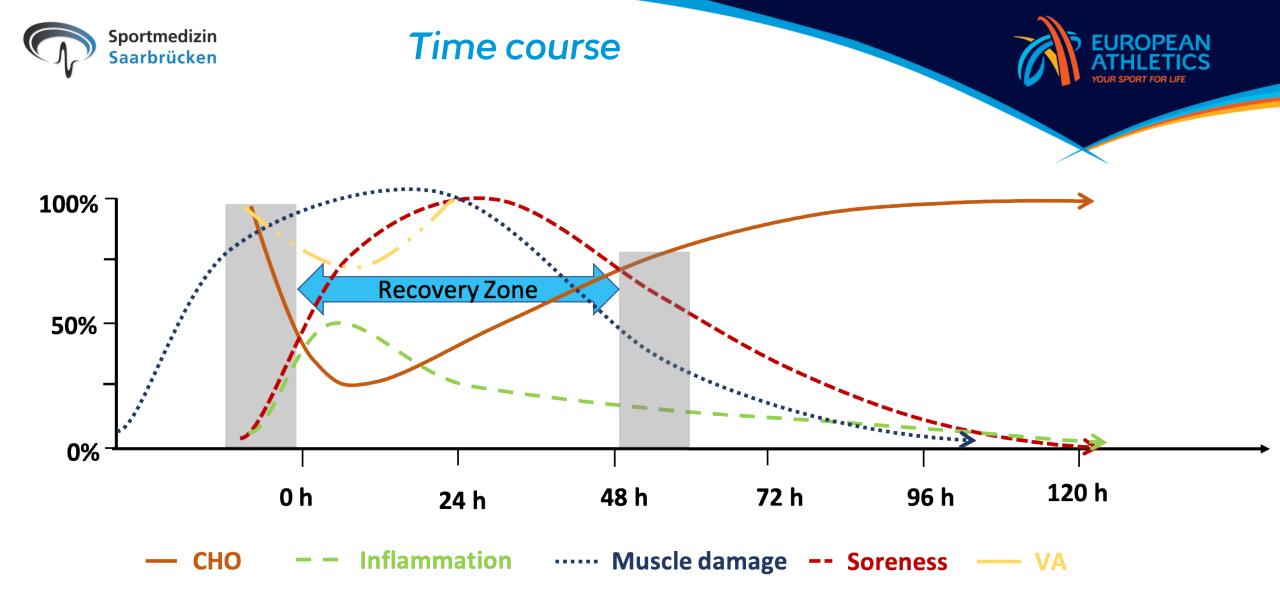
Massage: Standardisation is difficult Science vs practice

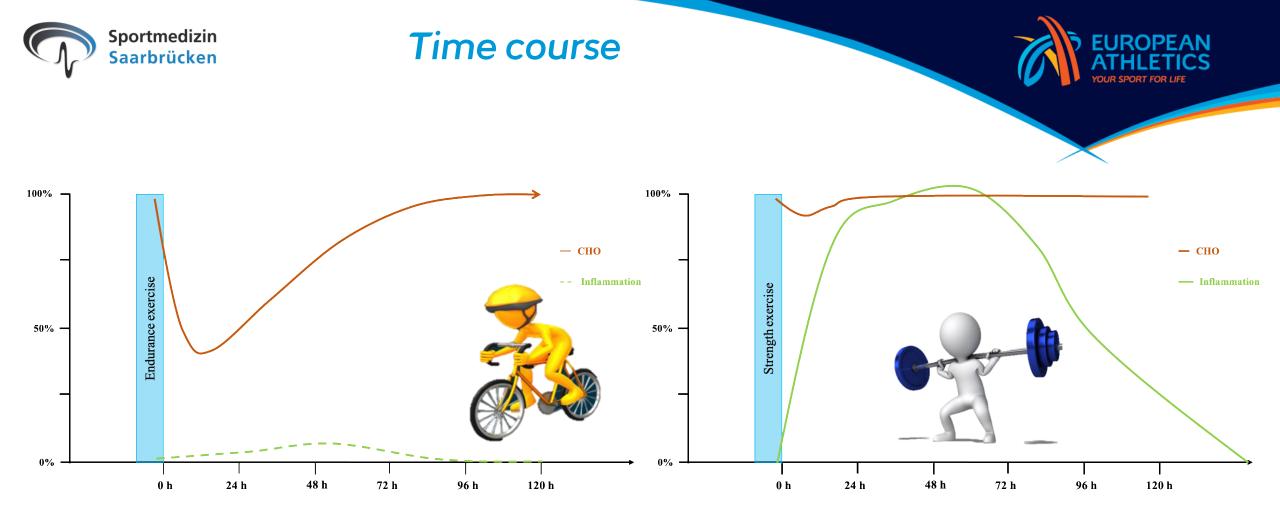
Sleep: Should be a cornerstone Sleep-Hygiene protocols Awareness is important

regman



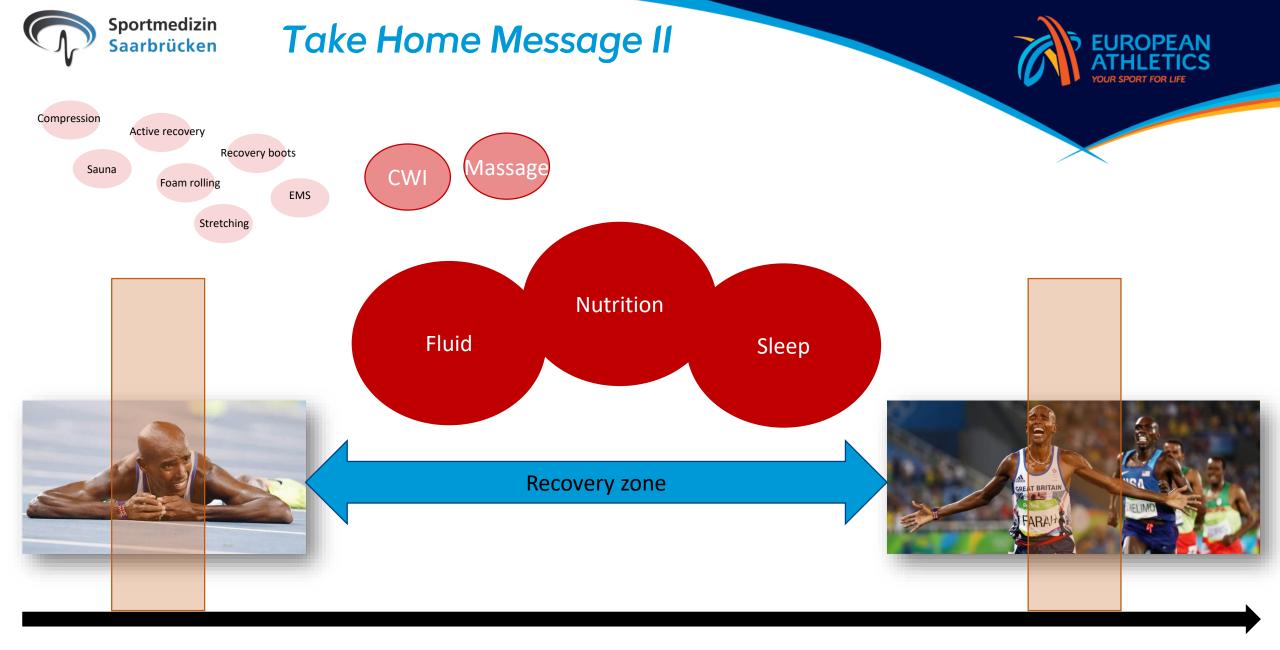



Fatigue & Recovery



- Fatigue depends on the exercise type/mode, duration & intensity.
- Fatigue-induced changes vary within & between individuals.
- Different time periods for recovery.

Alterations in training stimulus highlight the need to adapt recovery interventions.


Mujika et al. 2018

- Many physiological systems are involved with differing time courses of recovery.
- Effectiveness of recovery interventions are related to the nature & extend of fatigue.
- Planning & implementation of recovery interventions is complex.

Take Home Message II

General preperation	Specific preperation	Taper	Competition
Appropriate recovery to maximize adaptation.	Specific recovery support after key sessions, especially high-quality/skill sessions.	Recovery to minimize fatigue, decrease time to taper appropriately.	Recovery support to minimize fatigue and maximize competition performance.
Potentially withholding recovery.	Recovery to reduce fatigue & soreness for specific sessions.	Increased recovery to maintain high-intensity training.	Support to manage fatigue around travel & jetlag.

Thank you very much for your attention!

Dziękuję za uwagę!

Dr. Sabrina Skorski (PhD) Sport Scientist Institute of Sport and Preventive Medicine, Saarland University, Germany

Infographics designed by Dr. Yann Le Meur